GO TOP

Field

Integrative Life Sciences :
Cellular Network

Research

Professor MATSUI Ko
Campus Katahira campus
Laboratory Super-Network Brain Physiology
Tel +81-22-217-6209
E-mail matsui@tohoku.ac.jp
Website http://www.ims.med.tohoku.ac.jp/matsui/ http://www.ims.med.tohoku.ac.jp/matsui/member-KoMatsui.html
Career
1992  Entered Science Division II at the University of Tokyo
1996  Graduated Department of Psychology at the University of Tokyo
2001  Obtained PhD (Psychology) at the University of Tokyo (Supervisor; Masao Tachibana)
2001-2006  Postdoctoral research at the Vollum Institute (Portland, OR, USA) (PI; Craig E. Jahr)
2006-2012  Assistant Professor at the National Institute for Physiological Sciences (Okazaki, Aichi, Japan) (PI; Ryuichi Shigemoto)
2013-2017  Associate Professor at the Graduate School of Medicine, Tohoku University.
2017-present  Professor at the Graduate School of Life Sciences, Tohoku University
 
Selected Publications
  1. Sasaki D, Imai K, Ikoma Y, Matsui K* (2024)
    Plastic vasomotion entrainment. eLife, 13: RP93721.
    https://doi.org/10.7554/eLife.93721.3
    Press Release ( Japanese, English)
     
  2. Araki S, Onishi I, Ikoma Y, Matsui K* (2024)
    Astrocyte switch to the hyperactive mode.
    Glia, 72: 1418-1434.
    https://doi.org/10.1002/glia.24537
    Press Release ( Japanese, English)
     
  3. Tan W, Ikoma Y, Takahashi Y, Konno A, Hirai H, Hirase H, Matsui K* (2024)
    Anxiety control by astrocytes in the lateral habenula.
    Neuroscience Research, available online, Feb 2, 2024.
    https://doi.org/10.1016/j.neures.2024.01.006
    Press Release ( Japanese, English)
     
  4. Asano Y, Sasaki D, Ikoma Y, Matsui K* (2024)
    Glial tone of aggression.
    Neuroscience Research, 202: 39-51.
    https://doi.org/10.1016/j.neures.2023.11.008
    Press Release ( Japanese, English)
     
  5. Kawana Y, Imai J, Morizawa YM, Ikoma Y, Kohata M, Komamura H, Sato T, Izumi T, Yamamoto J, Endo A, Sugawara H, Kubo H, Hosaka S, Munakata Y, Asai Y, Kodama S, Takahashi K, Kaneko K, Sawada S, Yamada T, Ito A, Niizuma K, Tominaga T, Yamanaka A, Matsui K, Katagiri H (2023)
    Optogenetic stimulation of vagal nerves for enhanced glucose-stimulated insulin secretion and β cell proliferation.
    Nature Biomedical Engineering.
    https://doi.org/10.1038/s41551-023-01113-2
     
  6. Sato T, Sugaya T, Talukder AH, Tsushima Y, Sasaki S, Uchida K, Sato T, Ikoma Y, Sakimura K, Fukuda A, Matsui K, Itoi K (2023)
    Dual action of serotonin on local excitatory and inhibitory neural circuits regulating the corticotropin‐releasing factor neurons in the paraventricular nucleus of the hypothalamus.
    Journal of Neuroendocrinology, 35, e13351.
    https://doi.org/10.1111/jne.13351
     
  7. Kanaya T, Ito R, Morizawa YM, Sasaki D, Yamao H, Ishikane H, Hiraoka Y, Tanaka K, Matsui K* (2023)
    Glial modulation of the parallel memory formation.
    Glia, 71: 2401-2417.
    https://doi.org/10.1002/glia.24431
    Press Release ( Japanese, English)
     
  8. Ikoma Y, Takahashi Y, Sasaki D, Matsui K* (2023)
    Properties of REM sleep alterations with epilepsy.
    Brain, 146: 2431-2442.
    https://doi.org/10.1093/brain/awac499
    Press Release ( Japanese, English)
     
  9. Ikoma Y, Sasaki D, Matsui K* (2023)
    Local brain environment changes associated with epileptogenesis.
    Brain, 146: 576-586.
    https://doi.org/10.1093/brain/awac355
    Press Release ( Japanese, English)
     
  10. Morizawa YM, Matsumoto M, Nakashima Y, Endo N, Aida T, Ishikane H, Beppu K, Moritoh S, Inada H, Osumi N, Shigetomi E, Koizumi S, Yang G, Hirai H, Tanaka K, Tanaka KF, Ohno N, Fukazawa Y, Matsui K* (2022)
    Synaptic pruning through glial synapse engulfment upon motor learning.
    Nature Neuroscience, 25, 1458-1469.
    https://doi.org/10.1038/s41593-022-01184-5
    Press Release ( Japanese, English)
     
  11. Yu Z, Sakai M, Fukushima H, Ono C, Kikuchi Y, Koyama R, Matsui K, Furuyashiki T, Kida S, Tomita H (2022)
    Contextual fear conditioning regulates synapse-related gene transcription in mouse microglia.
    Brain Research Bulletin, 189, 57-68.
    http://https//doi.org/10.1016/j.brainresbull.2022.08.017
     
  12. Shimoda Y, Beppu K, Ikoma Y, Morizawa YM, Zuguchi S, Hino U, Yano R, Sugiura Y, Moritoh S, Fukazawa Y, Suematsu M, Mushiake H, Nakasato N, Iwasaki M, Tanaka KF, Tominaga T, Matsui K* (2022)
    Optogenetic stimulus-triggered acquisition of seizure resistance.
    Neurobiology of Disease, 163: 105602.
    https://doi.org/10.1016/j.nbd.2021.105602
    Press Release ( Japanese, English)
     
  13. Beppu K, Kubo N, Matsui K* (2021)
    Glial amplification of synaptic signals.
    Journal of Physiology, 599: 2085-2102.
    https://doi.org/10.1113/JP280857
    Press Release ( Japanese, English)
     
  14. Onodera M, Meyer J, Furukawa K, Hiraoka Y, Aida T, Tanaka K, Tanaka KF, Rose CR, Matsui K* (2021)
    Exacerbation of epilepsy by astrocyte alkalization and gap junction uncoupling.
    Journal of Neuroscience, 41: 2106-2118.
    https://doi.org/10.1523/JNEUROSCI.2365-20.2020
    Press Release ( Japanese, English)
     
  15. Hatakeyama N, Unekawa M, Murata J, Tomita Y, Suzuki N, Nakahara J, Takuwa H, Kanno I, Matsui K, Tanaka KF, Masamoto K (2021)
    Differential pial and penetrating arterial responses examined by optogenetic activation of astrocytes and neurons.
    J Cereb Blood Flow Metab, 41: 2676-2689.
    https://doi.org/10.1177/0271678X211010355
     
  16. Takata N, Sugiura Y, Yoshida K, Koizumi M, Hiroshi N, Honda K, Yano R, Komaki Y, Matsui K, Suematsu M, Mimura M, Okano H, Tanaka KF (2018)
    Optogenetic astrocyte activation evokes BOLD fMRI response with oxygen consumption without neuronal activity modulation.
    Glia, 66: 2013-2023.
    https://doi.org/10.1002/glia.23454
     
  17. Igarashi H, Ikeda K, Onimaru H, Kaneko R, Koizumi K, Beppu K, Nishizawa K, Takahashi Y, Kato F, Matsui K, Kobayashi K, Yanagawa Y, Muramatsu S, Ishizuka T, Yawo H (2018)
    Targeted expression of step-function opsins in transgenic rats for optogenetic studies.
    Scientific Reports, 8: 5435.
    https://doi.org/10.1038/s41598-018-23810-8
     
  18. Rubio ME, Matsui K, Fukazawa Y, Kamasawa N, Harada H, Itakura M, Molnár E, Abe M, Sakimura K, Shigemoto R (2017)
    The number and distribution of AMPA receptor channels containing fast kinetic GluA3 and GluA4 subunits at auditory nerve synapses depend on the target cells.
    Brain Structure and Function, 222: 3375-3393.
    https://doi.org/10.1007/s00429-017-1408-0
     
  19. Nakamura Y, Harada H, Kamasawa N, Matsui K, Rothman JS, Shigemoto R, Silver RA, DiGregorio DA, akahashi T (2015)
    Nanoscale distribution of presynaptic Ca2+ channels and its impact on vesicular release during development.
    Neuron, 85: 145–158.
    https://doi.org/10.1016/j.neuron.2014.11.019
     
  20. Masamoto K, Unekawa M, Watanabe T, Toriumi H, Takuwa H, Kawaguchi H, Kanno I, Matsui K, Tanaka KF, Tomita Y, Suzuki N (2015)
    Unveiling astrocytic control of cerebral blood flow with optogenetics.
    Scientific Reports, 5: 11455.
    https://doi.org/10.1038/srep11455
     
  21. Beppu K, Sasaki T, Tanaka KF, Yamanaka A, Fukazawa Y, Shigemoto R, Matsui K* (2014)
    Optogenetic countering of glial acidosis suppresses glial glutamate release and ischemic brain damage.
    Neuron, 81: 314–320.
    https://doi.org/10.1016/j.neuron.2013.11.011
     
  22. Kanemaru K, Sekiya H, Xu M, Satoh K, Kitajima N, Yoshida K, Okubo Y, Sasaki T, Moritoh S, Hasuwa H, Mimura M, Horikawa K, Matsui K, Nagai T, Iino M, Tanaka KF (2014)
    In vivo visualization of subtle, transient, and local activity of astrocytes using an ultrasensitive Ca2+ indicator.
    Cell Reports, 8: 311-318.
    https://doi.org/10.1016/j.celrep.2014.05.056
     
  23. Budisantoso T, Harada H, Kamasawa N, Fukazawa Y, Shigemoto R, Matsui K* (2013)
    Evaluation of glutamate concentration transient in the synaptic cleft of the rat calyx of Held.
    Journal of Physiology, 591: 219–239.
    https://doi.org/10.1113%2Fjphysiol.2012.241398
     
  24. Kaufmann WA, Matsui K, Jeromin A, Nerbonne J, Ferraguti F (2013)
    Kv4.2 potassium channels segregate to extrasynaptic domains in amygdala intercalated neurons and influence intrasynaptic NMDA receptor NR2B subunit expression.
    Brain Structure and Function, 218: 1115–1132.
    https://doi.org/10.1007%2Fs00429-012-0450-1
     
  25. Sasaki T, Beppu K, Tanaka KF, Fukazawa Y, Shigemoto R, Matsui K* (2012)
    Application of an optogenetic byway for perturbing neuronal activity via glial photostimulation.
    Proc Natl Acad Sci U S A, 109: 20720–20725.
    https://doi.org/10.1073/pnas.1213458109
     
  26. Tanaka KF*, Matsui K*, Sasaki T, Sano H, Sugio S, Fan K, Hen R, Nakai J, Yanagawa Y, Hasuwa H, Okabe M, Deisseroth K, Ikenaka K, Yamanaka A (2012)
    Expanding the repertoire of optogenetically targeted cells with an enhanced gene expression system.
    Cell Reports, 2: 397–406.
    https://doi.org/10.1016/j.celrep.2012.06.011
     
  27. Budisantoso T, Matsui K*, Kamasawa N, Fukazawa Y, Shigemoto R (2012)
    Mechanisms underlying signal filtering at a multi-synapse contact.
    Journal of Neuroscience, 32: 2357–2376.
    https://doi.org/10.1523/JNEUROSCI.5243-11.2012
     
  28. Abrahamsson T, Cathala L, Matsui K, Shigemoto R, Digregorio DA (2012)
    Thin dendrites of cerebellar interneurons confer sublinear synaptic integration and a gradient of short-term plasticity.
    Neuron, 73: 1159–1172.
    https://doi.org/10.1016/j.neuron.2012.01.027
     
  29. Sumegi M, Fukazawa Y, Matsui K, Lorincz A, Eyre MD, Nusser Z, Shigemoto R (2012)
    Virus-mediated swapping of zolpidem-insensitive with zolpidem-sensitive GABAA receptors in cortical pyramidal cells.
    Journal of Physiology, 590: 1517–1534.
    https://doi.org/10.1113/jphysiol.2012.227538
     
  30. Tarusawa E, Matsui K*, Budisantoso T, Molnár E, Watanabe M, Matsui M, Fukazawa Y*, Shigemoto R (2009)
    Input-specific intrasynaptic arrangements of ionotropic glutamate receptors and their impact on postsynaptic responses.
    Journal of Neuroscience, 29: 12896–12908.
    https://doi.org/10.1523/JNEUROSCI.6160-08.2009
     
  31. Jiang Y, Nishizawa Horimoto N, Imura K, Okamoto H, Matsui K, Shigemoto R (2009)
    Bioimaging with two-photon-induces luminescence from triangular nanoplates and nanoparticle aggregates of gold.
    Advanced Materials, 21: 2309–2313.
    https://doi.org/10.1002/adma.200802312
     
  32. Matsui K*, Jahr CE, Rubio ME (2005)
    High concentration rapid transients of glutamate mediate neural-glial communication via ectopic release.
    Journal of Neuroscience, 25: 7538–7547.
    https://doi.org/10.1523%2FJNEUROSCI.1927-05.2005
     
  33. Matsui K, Jahr CE (2004)
    Differential control of synaptic and ectopic vesicular release of glutamate.
    Journal of Neuroscience, 24: 8932–8939.
    https://doi.org/10.1523/JNEUROSCI.2650-04.2004
     
  34. Matsui K, Jahr CE (2003)
    Ectopic release of synaptic vesicles.
    Neuron, 40: 1173–1183.
    https://doi.org/10.1016/S0896-6273(03)00788-8
     
  35. Matsui K, Hasegawa J, Tachibana M (2001)
    Modulation of excitatory synaptic transmission by GABAC receptor-mediated feedback in the mouse inner retina.
    Journal of Neurophysiology, 86: 2285–2298.
    https://doi.org/10.1152/jn.2001.86.5.2285
     
  36. Matsui K, Hosoi N, Tachibana M (1999)
    Active role of glutamate uptake in the synaptic transmission from retinal nonspiking neurons.
    Journal of Neuroscience, 19: 6755–6766.
    https://doi.org/10.1523/jneurosci.19-16-06755.1999
     
  37. Matsui K, Hosoi N, Tachibana M (1998)
    Excitatory synaptic transmission in the inner retina: paired recordings of bipolar cells and neurons of the ganglion cell layer.
    Journal of Neuroscience, 18: 4500–4510.
    https://doi.org/10.1523/JNEUROSCI.18-12-04500.1998
     
  38. Sakaba T, Tachibana M, Matsui K, Minami N (1997)
    Two components of transmitter release in retinal bipolar cells: exocytosis and mobilization of synaptic vesicles.
    Neuroscience Research, 27: 357–370.
    https://doi.org/10.1016/s0168-0102(97)01168-1
     
Activities in Academic Societies
The Japan Neuroscience Society, Physiological Society of Japan, Society for Neuroscience, Optogenetics Research Society Japan
Teaching
Graduate School of Life Sciences, Graduate School of Medicine, School of Medicine, Tohoku University(Basic mechanisms of synaptic transmission, Brain physiology, Role of glial cells in brain function)
 

Recent Activities

Glutamate, a neurotransmitter, is released from the glial cells which can affect brain functions such as learning and memory. When the activity of glial cells becomes abnormal, excess glial release of glutamate occurs which causes brain cell death. A new mechanism was discovered where the acidosis of the cytoplasm of the glial cells was the direct trigger of glutamate release from glial cells (Beppu, …, Matsui*, Neuron 2014).
 
 
 

Message to Students

We welcome students with diverse backgrounds. Our technique of recording from individual cells in the brain and optogenetically controlling the activity of cells using optical fibers inserted into the live animals may seem to be extremely difficult techniques. Undergraduate lectures in any school will not prepare you for such experiments. Therefore, everybody entering the graduate school is at the same starting line. Your first successful electrophysiological recording can get you fascinated with this exciting new world of brain physiology. With the electrode attached to a single neuron, you can start a dynamic communication with the brain sample. Any stimulation that you give to the cell quickly gives you back an answer as shown on the oscilloscope. Optical manipulation and optical imaging of cell activity are also the same; an instant feedback is always given. Using these physiological techniques, we aim to understand how the network of networks of neurons and glial cells operate to produce what we inherently perceive as our mind.