脳生命統御科学専攻 :


田口 友彦

教授 田口 友彦
キャンパス 青葉山 キャンパス
所属研究室 細胞小器官疾患学
連絡先 022-795-6676
E-mail tomohiko.taguchi.b8@tohoku.ac.jp
Google shcolar



1992年           東京大学理学部生物化学科卒業
1994年        東京大学大学院理学系研究科生物化学科(修士課程)修了
1997年        東京大学大学院理学系研究科生物化学科(博士課程)修了
1994-1997年    日本学術振興会 特別研究員(DC1)
1997-1999年    理化学研究所 基礎科学特別研究員
1999-2004年    エール大学(米国)医学部細胞生物学部門
1999-2001年    日本学術振興会 海外特別研究員
2004-2007年    大阪大学大学院医学系研究科 特任助教授
2007-2008年    大阪大学大学院医学系研究科 特任准教授
2008-2010年    クイーンズランド大学(豪州)分子細胞生物学研究所 上級研究員
2011-2018年    東京大学大学院薬学系研究科 特任准教授
2018年-       東北大学大学院生命科学研究科 教授

Mukai, K., et al. (2021). Homeostatic regulation of STING by retrograde membrane traffic to the ER.
Nat Commun 12, 61.
Deng, Z., et al. (2020). A defect in STING trafficking causes COPA syndrome.
J. Exp. Med. 217, e20201045.
Watanabe, R., et al. (2020). SPOP is essential for DNA-protein crosslink repair in prostate cancer cells: SPOP-dependent removal of topoisomerase 2A from the topoisomerase 2A-DNA cleavage complex.
Mol. Biol. Cell 31, 478-490.
DOI: 10.1091/mbc.E19-08-0456
Arata, Y., et al. (2019). FAM48A mediates compensatory autophagy induced by proteasome impairment.
Genes Cells 24, 559-568.
DOI: 10.1111/gtc.12708
Tsuji, T., et al. (2019). Predominant localization of phosphatidylserine at the cytoplasmic leaflet of the ER, and its TMEM16K-dependent redistribution.
Proc. Natl. Acad. Sci. U S A 116, 13368-13373.
DOI: 10.1073/pnas.1822025116

Taguchi, T and Mukai, K. (2019) Innate immunity signalling and membrane trafficking.
Curr. Opin. Cell Biol. 59, 1-7.
Hansen, A. L., et al. (2019). STING palmitoylation as a therapeutic target.
Cell. Mol. Immunol. 16, 236-241.
Tanigawa, K., et al. (2019). SNX9 determines the surface levels of integrin β1 in vascular endothelial cells: Implication in poor prognosis of human colorectal cancers overexpressing SNX9.
J. Cell. Physiol. 234, 17280-17294.
DOI: 10.1002/jcp.28346
Murakami, A., et al. (2019). Cullin-3/KCTD10 E3 complex is essential for Rac1 activation through RhoB degradation in human epidermal growth factor receptor 2-positive breast cancer cells.
Cancer Sci. 110, 650-661.
DOI: 10.1111/cas.13899
Ogawa, E., et al. (2018). The binding of TBK1 to STING requires exocytic membrane traffic from the ER.
Biochem. Biophys. Res. Commun. 503, 138-145.
Hansen, A. L., et al. (2018). Nitro-fatty acids are formed in response to virus infection and are potent inhibitors of STING palmitoylation and signaling.
Proc. Natl. Acad. Sci. U S A 115, E7768-E7775.
Takahashi, S., et al. (2018). Development of a Series of Practical Fluorescent Chemical Tools To Measure pH Values in Living Samples.
J. Am. Chem. Soc. 140, 5925-5933.
Takahashi, M., et al. (2017). Magnetic Separation of Autophagosomes from Mammalian Cells Using Magnetic–Plasmonic Hybrid Nanobeads.
ACS Omega 2, 4929-4937.
DOI: 10.1021/acsomega.7b00929
Matsudaira, T., et al. (2017). Endosomal phosphatidylserine is critical for the YAP signalling pathway in proliferating cells.
Nat Commun 8, 1246.
DOI: 10.1038/s41467-017-01255-3
Maekawa, M., et al. (2017). Cullin-3 and its adaptor protein ANKFY1 determine the surface level of integrin β1 in endothelial cells.
Biol Open 6, 1707-1719.
DOI: 10.1242/bio.029579
Henmi, Y., et al. (2016). Phosphatidic acid induces EHD3-containing membrane tubulation and is required for receptor recycling.
Exp. Cell Res. 342, 1-10.
DOI: 10.1016/j.yexcr.2016.02.011
Mukai, K., et al. (2016). Activation of STING requires palmitoylation at the Golgi.
Nat Commun 7, 11932.
Makino, A., et al. (2015). Visualization of the heterogeneous membrane distribution of sphingomyelin associated with cytokinesis, cell polarity, and sphingolipidosis.
FASEB J. 29, 477-493.
DOI: 10.1096/fj.13-247585
Lee, S., et al. (2015). Transport through recycling endosomes requires EHD1 recruitment by a phosphatidylserine translocase.
EMBO J. 34, 669-688.
DOI: 10.15252/embj.201489703
Matsudaira, T., et al. (2015). Transport of the cholera toxin B-subunit from recycling endosomes to the Golgi requires clathrin and AP-1.
J. Cell Sci. 128, 3131-3142.
DOI: 10.1242/jcs.172171
Lee, S., et al. (2015). Endosomal lipid flippases and their related diseases.
Channels (Austin) 9, 166-168.
DOI: 10.1080/19336950.2015.1062332
Takahashi, M., et al. (2015). Ag/FeCo/Ag Core/Shell/Shell Magnetic Nanoparticles with Plasmonic Imaging Capability.
Langmuir 31, 2228-2236.
DOI: 10.1021/la5046805
Egami, Y., et al. (2014). Small GTPases and phosphoinositides in the regulatory mechanisms of macropinosome formation and maturation.
Front Physiol 5, 374.
DOI: 10.3389/fphys.2014.00374
Maekawa, M., et al. (2014). Sequential breakdown of 3-phosphorylated phosphoinositides is essential for the completion of macropinocytosis.
Proc. Natl. Acad. Sci. U S A 111, E978-87.
DOI: 10.1073/pnas.1311029111
Hullin-Matsuda, F., et al. (2014). Lipid compartmentalization in the endosome system.
Semin. Cell Dev. Biol. 31C, 48-56.
Matsudaira, T., et al. (2013). SMAP2 regulates retrograde transport from recycling endosomes to the Golgi.
PLoS ONE 8, e69145.
DOI: 10.1371/journal.pone.0069145
Nishimura, T., et al. (2013). Oxysterol-binding protein (OSBP) is required for the perinuclear localization of intra-Golgi v-SNAREs.
Mol. Biol. Cell 24, 3534-3544.
DOI: 10.1091/mbc.E13-05-0250
Taguchi, T. (2013). Emerging roles of recycling endosomes.
J. Biochem. 153, 505-510.
DOI: 10.1093/jb/mvt034
Taguchi, T., et al. (2012). [Emerging roles of intracellular phosphatidylserine (PS) in membrane traffic].
Seikagaku 84, 844-848.
Hieda, M., et al. (2012). The cytoplasmic tail of heparin-binding EGF-like growth factor regulates bidirectional intracellular trafficking between the plasma membrane and ER.
FEBS Open Bio 2, 339-344.
DOI: 10.1016/j.fob.2012.09.002
Yachi, R., et al. (2012). Subcellular localization of sphingomyelin revealed by two toxin-based probes in mammalian cells.
Genes Cells 17, 720-727.
DOI: 10.1111/j.1365-2443.2012.01621.x
Okazaki, S., et al. (2012). Structural basis of the strict phospholipid binding specificity of the pleckstrin homology domain of human evectin-2.
Acta Crystallogr. D Biol. Crystallogr. 68, 117-123.
 McKenzie, J. E., et al. (2012). Retromer Guides STxB and CD8-M6PR from Early to Recycling Endosomes, EHD1 Guides STxB from Recycling Endosome to Golgi.
Traffic 13, 1140-1159.
Lee, S., et al. (2012). Impaired retrograde membrane traffic through endosomes in a mutant CHO cell defective in phosphatidylserine synthesis.
Genes Cells 17, 728-736.
DOI: 10.1111/j.1365-2443.2012.01622.x
Beaumont, K. A., et al. (2011). The recycling endosome protein Rab17 regulates melanocytic filopodia formation and melanosome trafficking.
Traffic 12, 627-643.
DOI: 10.1111/j.1600-0854.2011.01172.x
Taguchi, T., et al. (2011). Palmitoylation pilots ras to recycling endosomes.
Small Gtpases 2, 82-84.
DOI: 10.4161/sgtp.2.2.15245
Uchida, Y., et al. (2011). Intracellular phosphatidylserine is essential for retrograde membrane traffic through endosomes.
Proc. Natl. Acad. Sci. U S A 108, 15846-15851.
DOI: 10.1073/pnas.1109101108
Low, P. C., et al. (2010). Phosphoinositide 3-kinase delta regulates membrane fission of Golgi carriers for selective cytokine secretion.
J. Cell Biol. 190, 1053-1065.
DOI: 10.1083/jcb.201001028
Misaki, R., et al. (2010). Palmitoylated Ras proteins traffic through recycling endosomes to the plasma membrane during exocytosis.
J. Cell Biol. 191, 23-29.
DOI: 10.1083/jcb.200911143
Uechi, Y., et al. (2009). Rap2 function requires palmitoylation and recycling endosome localization.
Biochem. Biophys. Res. Commun. 378, 732-737.
DOI: 10.1016/j.bbrc.2008.11.107
McKenzie, J., et al. (2009). Passage through the Golgi is necessary for Shiga toxin B subunit to reach the endoplasmic reticulum.
FEBS J. 276, 1581-1595.
DOI: 10.1111/j.1742-4658.2009.06890.x
Nakao, R., et al. (2009). Development of magnetic separation system of magnetoliposomes.
Physica C 469, 1840-1844
DOI: 10.1016/j.physc.2009.05.244
Hieda, M., et al. (2008). Membrane-anchored growth factor, HB-EGF, on the cell surface targeted to the inner nuclear membrane.
J. Cell Biol. 180, 763-769.
DOI: 10.1083/jcb.200710022
Fujibayashi, A., et al. (2008). Human RME-8 is involved in membrane trafficking through early endosomes.
Cell Struct. Funct. 33, 35-50.
DOI: 10.1247/csf.07045
Misaki, R., et al. (2007). Spatial segregation of degradation- and recycling-trafficking pathways in COS-1 cells.
Biochem. Biophys. Res. Commun. 360, 580-585.
DOI: 10.1016/j.bbrc.2007.06.101
Nakagawa, T., et al. (2006). Fucosylation of N-glycans regulates the secretion of hepatic glycoproteins into bile ducts.
J. Biol. Chem. 281, 29797-29806.
DOI: 10.1074/jbc.M605697200
Watanabe, T., et al. (2006). A specific detection of GlcNAcbeta1-6Manalpha1 branches in N-linked glycoproteins based on the specificity of N-acetylglucosaminyltransferase VI.
Glycobiology 16, 431-439.
DOI: 10.1093/glycob/cwj079
Ang, A. L., et al. (2004). Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells.
J. Cell Biol. 167, 531-543.
DOI: 10.1083/jcb.200408165
Mitra, K., et al. (2004). Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol.
Proc. Natl. Acad. Sci. U S A 101, 4083-4088.
Korekane, H., et al. (2003). Purification and cDNA cloning of UDP-GlcNAc:GlcNAcbeta1-3Galbeta1-4Glc(NAc)-R [GlcNAc to Gal]beta1,6N-acetylglucosaminyltransferase from rat small intestine: a major carrier of dIGnT activity in rat small intestine.
Glycobiology 13, 387-400.
Taguchi, T., et al. (2003). Biochemical sub-fractionation of the mammalian Golgi apparatus.
Traffic 4, 344-352.
DOI: 10.1034/j.1600-0854.2003.00091.x
Seemann, J., et al. (2002). Partitioning of the matrix fraction of the Golgi apparatus during mitosis in animal cells.
Science 295, 848-851.
DOI: 10.1126/science.1068064
Taguchi, T., et al. (2000). Purification and characterization of UDP-GlcNAc: GlcNAcbeta 1-6(GlcNAcbeta 1-2)Manalpha 1-R [GlcNAc to Man]-beta 1, 4-N-acetylglucosaminyltransferase VI from hen oviduct.
J. Biol. Chem. 275, 32598-32602.
DOI: 10.1074/jbc.M004673200
Sakamoto, Y., et al. (2000). Molecular cloning and expression of cDNA encoding chicken UDP-N-acetyl-D-glucosamine (GlcNAc): GlcNAcbeta 1-6(GlcNAcbeta 1-2)- manalpha 1-R[GlcNAc to man]beta 1,4N-acetylglucosaminyltransferase VI.
J. Biol. Chem. 275, 36029-36034.
DOI: 10.1074/jbc.M005860200




・自然免疫分子STINGの活性化がゴルジ体で起こること、そのメカニズムとしてゴルジ体膜で起こるSTINGのパルミトイル化脂質修飾が必須であることを明らかにしました(Mukai et al., Nat Commun 2016)。STINGは老化や生活習慣病による炎症、抗腫瘍免疫など幅広い生命現象に関与しており、STINGの活性化・不活性化の分子機構を理解することは、純粋なサイエンスとしての興味に加えて、人類の健康に大きく貢献するものと考えています。
・細胞小器官に固有に存在するリン脂質を利用した、細胞小器官に局在するタンパク質の同定法を開発しました(Matsudaira et al., Nat Commun 2017)。今後、細胞小器官膜の機能解明に多いに貢献することが期待される新手法です。