GO TOP

研究分野

脳生命統御科学専攻 :
協力教員

研究

丹羽 伸介

准教授 丹羽 伸介
キャンパス 青葉山 キャンパス
所属研究室 神経細胞生物学
連絡先 022-796-4734
E-mail shinsuke.niwa.c8@tohoku.ac.jp
ホームページ https://www.fris.tohoku.ac.jp/~niwa/
Google Scholar
 
 北海道札幌市出身。東京、サンフランシスコベイエリア、仙台と巡ってきましたが、場所や使う生物や手法が変わっても一貫して細胞骨格とモータータンパク質の研究と、趣味の釣りをしてきました。
経歴
2001        BSc,  Department of Biology, School of Science, University of Tokyo. 
2007        PhD,  Department of Cell Biology, School of Medicine, University of Tokyo. 
        Supervised by Dr. Nobutaka Hirokawa
2007 - 2012     Postdoctoral fellow, University of Tokyo.  Supervised by Dr. Nobutaka Hirokawa
2012 - 2015      Research Associate, Stanford University. Supervised by Dr. Kang Shen
2016 - 2019      Assistant Professor, FRIS, Tohoku University
2019 - Current    Associate Professor, FRIS, Tohoku University
 
著書・論文
2025年
Naher, S., K. Iemura, S. Miyashita, M. Hoshino, K. Tanaka, S. Niwa, J.-W. Tsai, T. Kikkawa, and N. Osumi. 2025. Kinesin-like motor protein KIF23 maintains neural stem and progenitor cell pools in the developing cortex. The EMBO Journal. 44:331-355.
Kita, T., R. Sugie, Y. Suzuki, and S. Niwa. 2025. Modular photostable fluorescent DNA blocks dissect the effects of pathogenic mutant kinesin on collective transport. Cell Reports Physical Science. 6: 102440
Kita, T., K. Sasaki, and S. Niwa. 2025. Biased movement of monomeric kinesin-3 KLP-6 explained by a symmetric Brownian ratchet model. Biophysical Journal. 124:205-214.

2024年
Niwa, S., T. Watanabe, and K. Chiba. 2024. The FHA domain is essential for autoinhibition of KIF1A/UNC-104 proteins. Journal of Cell Science. 137.
Kita, T., and S. Niwa. 2024. Total Internal Reflection Fluorescence (TIRF) Single-Molecule Assay to Analyze the Motility of Kinesin. Bio-protocol. 14:e5135.
Kita, T., K. Chiba, J. Wang, A. Nakagawa, and S. Niwa. 2024. Comparative analysis of two Caenorhabditis elegans kinesins KLP-6 and UNC-104 reveals a common and distinct activation mechanism in kinesin-3. Elife. 12:RP89040.
Iguchi, R., T. Kita, T. Watanabe, K. Chiba, and S. Niwa. 2024. Characterizing human KIF1Bβ motor activity by single-molecule motility assays and Caenorhabditis elegans genetics. Journal of Cell Science. 137.
Guo, X., C.H. Huang, T. Akagi, S. Niwa, R.J. McKenney, J.-R. Wang, Y.-R.J. Lee, and B. Liu. 2024. An Arabidopsis Kinesin-14D motor is associated with midzone microtubules for spindle morphogenesis. Current Biology. 34:3747-3762. e3746.
Chiba, K., and S. Niwa. 2024. Autoinhibition and activation of kinesin-1 and their involvement in amyotrophic lateral sclerosis. Current Opinion in Cell Biology. 86:102301.

2023年
Niwa, S., and K. Chiba. 2023. Generation of recombinant and chickenized scFv versions of an anti‐kinesin monoclonal antibody H2. Cytoskeleton. 80:356-366.
Kita, T., K. Sasaki, and S. Niwa. 2023. Modeling the motion of disease-associated KIF1A heterodimers. Biophysical Journal. 122:4348-4359.
Higashida, M., and S. Niwa. 2023. Dynein intermediate chains DYCI‐1 and WDR‐60 have specific functions in Caenorhabditis elegans. Genes to Cells. 28:97-110.
Chiba, K., T. Kita, Y. Anazawa, and S. Niwa. 2023. Insight into the regulation of axonal transport from the study of KIF1A-associated neurological disorder. Journal of Cell Science. 136:jcs260742.

2022年
Taguchi, S., J. Nakano, T. Imasaki, T. Kita, Y. Saijo-Hamano, N. Sakai, H. Shigematsu, H. Okuma, T. Shimizu, and E. Nitta. 2022. Structural model of microtubule dynamics inhibition by kinesin-4 from the crystal structure of KLP-12–tubulin complex. Elife. 11:e77877.
Nakano, J., K. Chiba, and S. Niwa. 2022. An ALS‐associated KIF5A mutant forms oligomers and aggregates and induces neuronal toxicity. Genes to Cells. 27:421-435.
Imasaki, T., S. Kikkawa, S. Niwa, Y. Saijo-Hamano, H. Shigematsu, K. Aoyama, K. Mitsuoka, T. Shimizu, M. Aoki, and A. Sakamoto. 2022. CAMSAP2 organizes a γ-tubulin-independent microtubule nucleation centre through phase separation. Elife. 11:e77365.
Chiba, K., K.M. Ori-McKenney, S. Niwa, and R.J. McKenney. 2022. Synergistic autoinhibition and activation mechanisms control kinesin-1 motor activity. Cell reports. 39.
Anazawa, Y., and S. Niwa. 2022. Analyzing the impact of gene mutations on axonal transport in Caenorhabditis elegans. In Axonal Transport: Methods and Protocols. Springer US New York, NY. 465-479.
Anazawa, Y., T. Kita, R. Iguchi, K. Hayashi, and S. Niwa. 2022. De novo mutations in KIF1A-associated neuronal disorder (KAND) dominant-negatively inhibit motor activity and axonal transport of synaptic vesicle precursors. Proceedings of the National Academy of Sciences. 119:e2113795119.

2021年
Takahashi, H., M. Kamiya, M. Kawatani, K. Umezawa, Y. Ukita, S. Niwa, T. Oda, and Y. Urano. 2021. Neural and behavioral control in Caenorhabditis elegans by a yellow-light–activatable caged compound. Proceedings of the National Academy of Sciences. 118:e2009634118.
Lam, A.J., L. Rao, Y. Anazawa, K. Okada, K. Chiba, M. Dacy, S. Niwa, A. Gennerich, D.W. Nowakowski, and R.J. McKenney. 2021. A highly conserved 310 helix within the kinesin motor domain is critical for kinesin function and human health. Science advances. 7:eabf1002.
Hayashi, K., M.G. Miyamoto, and S. Niwa. 2021. Effects of dynein inhibitor on the number of motor proteins transporting synaptic cargos. Biophysical Journal. 120:1605-1614.

2020年
Monroy, B.Y., T.C. Tan, J.M. Oclaman, J.S. Han, S. Simó, S. Niwa, D.W. Nowakowski, R.J. McKenney, and K.M. Ori-McKenney. 2020. A combinatorial MAP code dictates polarized microtubule transport. Developmental cell. 53:60-72. e64.
Hayashi, K., S. Hasegawa, and S. Niwa. 2020. What is the temperature of a cell? Europhysics News. 51:48-50.

2019年
Yanagi, S., T. Sugai, T. Noguchi, M. Kawakami, M. Sasaki, S. Niwa, A. Sugimoto, and H. Fuwa. 2019. Fluorescence-labeled neopeltolide derivatives for subcellular localization imaging. Organic & Biomolecular Chemistry. 17:6771-6776.
Shao, Z., S. Niwa, A. Higashitani, and Y. Daigaku. 2019. Vital roles of PCNA K165 modification during C. elegans gametogenesis and embryogenesis. DNA repair. 82:102688.
Hayashi, K., S. Matsumoto, M.G. Miyamoto, and S. Niwa. 2019. Physical parameters describing neuronal cargo transport by kinesin UNC-104. Biophysical reviews. 11:471-482.
Gabrych, D.R., V.Z. Lau, S. Niwa, and M.A. Silverman. 2019. Going too far is the same as falling short†: Kinesin-3 family members in hereditary spastic paraplegia. Frontiers in Cellular Neuroscience. 13:419.
Chiba, K., H. Takahashi, M. Chen, H. Obinata, S. Arai, K. Hashimoto, T. Oda, R.J. McKenney, and S. Niwa. 2019. Disease-associated mutations hyperactivate KIF1A motility and anterograde axonal transport of synaptic vesicle precursors. Proceedings of the National Academy of Sciences. 116:18429-18434.
 
所属学会

American Society for Cell Biology, 日本細胞生物学会、日本分子生物学会、日本解剖学会

最近の研究について

シナプスの材料を軸索輸送する分子モータータンパク質であるKIF1Aの遺伝的変異は運動神経障害、自閉症、発達障害、学習障害といった先天性の脳神経疾患の原因となります。ゲノム編集を用いて疾患モデル線虫を作成し、この疾患にはKIF1Aのモーター活性が低下し軸索輸送が減る場合と、KIF1Aのモーター活性が亢進して軸索輸送が増加する場合の2つのタイプがあることを発見しました (PNAS, 2019とPNAS, 2023)。モーター活性の亢進はKIF5Aという別のモータータンパク質の遺伝子の変異を原因とするALSでも起こっていました (Genes Cells, 2023)。KIF1Aの活性が亢進するときにはKIF1Aの二量体化が促進されていることを明らかにしました (eLife, 2024)。複数のモータータンパク質の協調運動をin vitro再構成で簡単に観察するために、DNAオリガミを用いた手法を開発し、FTOBと名付けました (Cell Rep Phy Sci, 2025)。

メッセージ

 興味を持ったらくわしい話は直接聞きに来て下さい。いつでも歓迎します。
扱いに慣れていて実績のある C.elegans や哺乳類を用いた神経細胞の形態形成メカニズムの解析の中心に据えています。しかし、今後を見据えたプロジェクトとして、単細胞生物を用いて「軸索輸送の進化的起源の探索」や「変わった性質を持つ微小管や分子モータータンパク質の探索」なども行っています。